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FINDING AN APPROXIMATE MAXIMUM*

N. ALON’:]: AND Y. AZAR’

Abstract. Suppose that there are n elements from a totally ordered domain. The objective is to find,
in a minimum possible number of rounds, an element that belongs to the biggest n/2, where in each round
one is allowed to ask n binary comparisons. It is shown that log* n +19(1) rounds are both necessary and
sufficient in the best algorithm for this problem.
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1. Introduction. Parallel comparison algorithms have received much attention
during the last decade. The problems that have been considered include sorting [AA87],
[AA88], [AAV86], [Ak853, [AKS833, [A185], [AV87], [BT83], [BHe85], [HH81],
[HH82], [Kn73], [Kr83], [Le84], [Pi86]; merging [BHo82], [HH82], [Kr83], [SV81];
selecting [AA88], [AKSS86a], lAP89], [Pi87], [Va75]; and approximate sorting
[AA88], [AAV86], [AKSS86b], [BB87], [BR82]. The common model of computation
considered is the parallel comparison model, introduced by Valiant [Va75], where only
comparisons are counted. In this model, during each time unit (called a round) a set
of binary comparisons is performed. The actual set of comparisons asked is chosen
according to the results of the comparisons done in previous rounds. The objective is
to solve the problem at hand, trying to minimize the number of comparison rounds
as well as the total number of comparisons performed. Note that this model ignores
the time corresponding to deducing consequences from comparisons performed, as
well as communication and memory addressing time. However, in some situations this
seems to be the relevant model. Moreover, any lower bound here applies to any
comparison-based algorithm. There is an obvious, useful correspondence that associates
each round of any comparison algorithm in the above parallel model with a graph
whose vertices form the set of elements we have. The (undirected) edges of this graph
are just the pairs compared during the round. The answer to each comparison corre-
sponds to orienting the corresponding edge from the larger element to the smaller.
Thus in each round we get an acyclic orientation of the corresponding graph, and the
transitive closure of the union of the r oriented graphs obtained until round r represents
the set of all pairs of elements whose relative order is known at the end of round r.

In many of the problems discussed so far in the parallel comparison model, the
most interesting case is the one where the number n of elements is equal to the number
of comparisons performed in each round. It is well known that in this case @(log n)
rounds are both necessary and sufficient for sorting. The lower bound follows trivially
from the serial lower bound, and the upper bound follows from, e.g., the AKS sorting
networks [AKS83]. As proved by Valiant, (R)(log log n) rounds are both necessary and
sufficient for finding the maximum. The results of [AKSS86a] and [BHo82] show that
the same (R)(log log n) bound holds for selecting and merging, respectively

In the present paper we consider, motivated by the research on approximate
sorting, another problem called the approximate maximum problem. This is the problem
of finding, among n elements, an element whose rank belongs to the top n/2 ranks.
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It is easy to show that in the serial comparison model this problem requires n/2
comparisons: only a constant factor better than the problem of finding the maximum.
It is therefore rather surprising that with n comparisons in each round this problem
can be solved much faster than that of finding the exact maximum in the same
conditions. As it turns out, log* n + (R)(1) rounds are both necessary and sufficient for
finding an approximate maximum among n elements, using n comparisons in each
round. Moreover, the gap between the upper and lower bounds we obtain is only six
rounds! The precise formulation of our result is the following. For a >= 1, k >= 0 define
a (k) by a () and a k) a

aj’-’) for k -> 1. Also define, as usual, log* n min{k" 2k)-> n}.
Let r(n) denote the worst-case number of rounds of the best deterministic algorithm
that finds an approximate maximum among n elements using n comparisons in each
round. Our result is the following theorem.

THEOREM 1.1. For every n >--_ 2,

log* n 4 <-- r(n) _--< log* n + 2.

The upper bound here is not by explicit algorithm, as our algorithm uses certain
random graphs. However, the known results about expanders easily supply (as in, e.g.,
[A185], [A186], [Pi87]) an explicit version of the algorithm, which will take about
log* n + 12 rounds.

We note that our methods can be extended to the case where we have p comparisons
in each round, as well as to the problem of finding an element whose rank is in the
top en ranks for all p_-> and 1/n =< e _<-. With some additional work we can also
obtain the corresponding results for approximate sorting. However, for the sake of
simplicity we present here, in 2 and 3, only the proof of Theorem 1.1 and only state
the more general results (the detailed proofs of which will appear elsewhere) in the
final 4.

2. The upper bound. In this section we prove the upper bound, i.e., that using n
processors we can find an element whose rank belongs to the top half of the ranks of
the n elements in log* n + 2 rounds. Our algorithm uses some known results. The first
is the algorithm of Valiant for finding the exact maximum. The others deal with
properties of some random graphs (or explicit expanders). First we state a theorem
from [VAT5] and two lemmas from [Pi87].

THEOREM 2.1 [Va75]. The maximum of n>4 elements can be bound using n
processors in [log log n rounds. [3

LIMMA 2.2 [Pi87]. For every m and a, there is a graph with m vertices and
2m2 log m/aedgesinwhichanytwodisjointsetsofa + verticesarejoinedbyanedge. [3

LEMMA 2.3 [Pi87]. If m elements are compared according to the edges of a graph
in which any two disjoint sets of a + vertices are joined by an edge, then for every rank
all but at most 6a log m elements will be known to be too small or too large to have that
rank. [3

For our algorithm we use Theorem 2.1 and a corollary of the’last two lemmas.
Note that Lemma 2.2 does not give an explicit construction of a graph with the specified
properties; therefore, the algorithm seems to be nonexplicit. However, we can use
some of the known results about explicit expanders (as in [Pi87], [A185], [A186]) to
obtain an explicit version of our algorithm (with a slightly bigger additive constant).
As the treatment for this case is analogous, we discuss here only the algorithm that
uses Lemma 2.2.

PROPOSITION 2.4. Assume we have m elements and p 2m2 log ma. Then, we can

find in one round (using p comparisons) an element whose rank belongs to the top 7 a log m
ranks of elements.
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Proof Compare the elements according to the edges of the graph supplied by
Lemma 2.2. By Lemma 2.3, all but at most 6a log m elements will be known to be too
small ortoo large to have rank m-7a log m. Therefore, at least (7-6)a log rn elements
will be known to belong to the top 7a log m elements.

For the description of our algorithm, we define the following function: f(x)=
T"/4. x, x->_ 1. f is a monotone increasing function and therefore f-l(y) exists (for
y _-> 2) and is also a monotone (increasing) function. Define the following two sequences:

bo 216 bi+l =f(bi), _-> 0 (We can easily check that all the bls are integers),

ao n, ai+l =f-l(a), i=>0.

Define k(n) by

(2.1) k(n) min {k: bk --> n}.

By trivial induction using the monotonicity of f-l, we get

(2.2) ai<-bk_i forO<=i<k(n).

Our algorithm is based on the following lemma, which is a consequence of the previous
proposition.

LEMMA 2.5. Assume we have n=>232 elements, partitioned into m= [n/f-l(n)]
pairwise disjoint set, the ith having t<= [f-l(n)] elements. Suppose that in each set we
have an element that is smaller than at most et elements in this set. Then we can find in
one round using n processors an element smaller than at most (e + c/x/f-(n))n elements
among the n elements, where c 32.

Proof Choose a [4m/log rn ]. Note that rn => 216, a-->4m/log rn => 26. Clearly,
(2mZlog m)/a<=(m log4 m)/2<=n, because by the definition of f:loga(n/f-l(n))
f-’(n).

Thus we can use Proposition 2.4 for the m special elements with the n processors
and find an element that belongs to the top 7a log rn elements out of the rn elements.
But

[ 4m ]logm<=7( 4m ) 65 4m 30m
+ log rn7a log rn 7

log rn log rn 64 log rn log2 m"

Therefore, the number of elements greater than this element is at most

30m (1) 30(l+l/216)n/f-l(n)
<=en+ 1+ f-en+ [/-l(n)] lo82 rn

(n). lo82 (n/f_l(n))

rl e +log
(In the last inequalities we used the facts that f-(n), m =>26.)

Now log (n/f-(n))=log (2-’()/4) =/f-(n). Hence we can find an element
that is smaller than at most (e+(c/x/f-(n)))n, where c=32.

Now we can describe our algorithm and prove that it works.
THEOREM 2.6. We can find an element the rank of which belongs to the top half of

the ranks of n >= 2 elements in log* n + 2 rounds using n processors.
To obtain the last theorem, we prove by induction a more exact lemma.
LEMMA 2.7. Let n be the number of elements and the number of processors. Then

we can find in k(n)+4 rounds (where k(n) is the number defined in (2.1)) an element
-2 1/ elements.that is smaller than at most cn
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Proof We apply induction on n. The basic case is n _-< b In this case, we find
k-2

the exact maximum using Theorem 2.1. Here k-< so cn i=o 1/, 0, and we really
find the exact maximum. To calculate the number of rounds we consider three cases.
If n -< 4, four rounds are more than what is needed. If n-< bo, then by Theorem 2.1
[log log n] <_- [log log bo] [log log 216] =4= k(n)+4. Otherwise bo< n -< bl, k(n)= 1,
and [log log hi-< [log log b]= [loglog 232] =5= +4= k(n)+4. Assuming that the

232, k(n) > 2). Split the nlemma is true for every n < n, we prove it for n (n > bl
elements into m [n/f-(n)] pairwise disjoint sets, where the jth set has size nJ <-

[f-l(n)]. Assign to each set a number of processors equal to the size of the set. Now
we can use the inductive assumption for each of the new sets, and find in k’+4-<

k([f-l(n)])+4 rounds an element in each set, where the one in the jth set is smaller
k’-2than at most cnj i=o 1/v/ elements in his set. By the definition of k, n-< bk so

f-l(n)<-f-(bk)=bk_ and because the right-hand side is an integer nj-< [f-(n)]-<
bk_. Hence k’-< k-1; therefore we are allowed to have one more round to find the
right element (among the m special elements). For that we use Lemma 2.5 and find
an element smaller than at most

e+ n-< + cn
d/--l( #’l i=0 df" l’( il

other elements. Note that b__l <n so bt,_2-<f-(n), and hence the last expression is
at most

-2 1/ elements amongHence, we can find an element smaller than at most cn
all the n elements in k(n)+ 4 rounds. This completes the proof of Lemma 2.7. 71

To complete the proof of the main theorem, we just have to check the following
two simple facts:

(2.4) k(n) +4-< log* n+2.

2(b.) /4 2Inequality (2.3) is trivial, since bi+ b>_- bi or 1/b-+-<1/2/v/-b-. Thus

2c 64 1

4

To prove (2.4) we need the following simple lemma:
LEMMA 2.8. bi >- 28(2(i+2))4 for every >- O.
Proof The proof is by induction on i. For i=0, bo 26=28(22)4= 28. (2(2))4.

Assuming the inequality holds for i, we prove it for i+ 1. Indeed, b+l 2 (b’)/4 bi
2 (28)1/4"2(’+2) 28(2(i+))4 by the definition of b+ and by the inductive assumption. But
the right-hand side is ->_28. 24"2(i+2)-" 28(2(i+3))4, which completes the proof. 71

Taking i= log* n-2, we get that b => n and, therefore, k(n)<= log* n-2. Thus,
we have the complexity of the algorithm, which is k(n) + 4 N log* n + 2. This completes
the proof of Theorem 2.6.

3. The lower bound. It is convenient to establish our lower bound by considering
the following (full information) game, called the orientation game, and played by two
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players, the graphs player and the order player. Let V be a fixed set of n vertices. The
game consists of rounds. In the first round the graphs player presents an undirected
graph G on V with at most n edges, and the order player chooses an acyclic orientation

H of G1 and shows it to the graphs player, thus ending the first round. In the second
round the graphs player chooses again, an undirected graph G2 with at most n edges
on V, and the order player gives it an acyclic orientation H2, consistent with H1 (i.e.,
the union of H1 and Hz is also acyclic), which he presents to the graphs player. The
game continues in the same manner; in round the graphs player chooses an undirected
graph Gi with at most n edges on V, and the order player gives it an acyclic orientation
Hi, such that the union H1 U. U Hi is also acyclic. The game ends when, after, say,
round r, there is a vertex v in V whose outdegree in the transitive closure ofH U U Hr
is at least n / 2. The objective of the graphs player is to end the game as early as possible,
and that of the order player is to end it as late as possible. The following fact states
the (obvious) connection between the orientation game and the approximate maximum
problem.

PROPOSITION 3.1. The graphs player can end the orientation game in r rounds if
and only if there is a comparison algorithm that finds an approximate maximum among
n elements, using n comparisons in each round in r rounds. [3

In view of the last proposition and the results of the previous section, the graphs
player can always end the orientation game in at most log* n + O(1) rounds. A proof
of existence of a strategy for the order player that enables him to avoid ending the
orientation game in r rounds implies that r + is a lower bound for the time complexity
of the approximate maximum problem. The next proposition is our main tool for
establishing the existence of such a strategy for r--log* n- 5.

PROPOSITION 3.2. There exists a strategy for the order player to maintain, for every
d >= 1, thefollowingproperty P(d) ofthe directed acyclic graph constructed during the game.

Property P(d). Let H(d)= H1U"" U Hd be the union of the oriented graphs
constructed in the first d rounds. Then there is a subset Vo V of size at most lVol <=
n/8+ n/16+...+ n/2d+2 and a proper D=2OO@d-vertex-eoloring of the induced sub-
graph of H(d) on V-Vo with color classes V, Vz,..., VD (some of which may be
empty), such that for each i>j >= and each v V, v has at most 2 i-j-2 neighbors in

V. Furthermore, for every i>j >= 0 any edge of H(d) that joins a member of V to a
member of is directed from Vi to .

Proof We apply induction on d. For d 1, the graph G (V, El) constructed by
the graphs player has at most n edges. Let Vo0 be the set of all vertices in V whose
degree is at least 32. Clearly,

(3.1) Vool <= n/16.
Put U V-Voo and let K be the induced subgraph of G on U. As the maximum
degree in K is at most 31, K has, by a standard, easy result from extremal graph
theory (see, e.g., [Bo78, p. 222]) a proper vertex-coloring by 32 colors and hence,
certainly, a proper vertex coloring by 2000 colors. Let U, U2," , U20oo be the color
classes. For every vertex u of K, let N(u) denote the set of all its neighbors in K. For
a permutation r of 1, 2,..., 2000 and any vertex n of K, define the r-degree d(r, u)
of u as follows. Let satisfy u Ui; then d(r, u) Z-__ IN(u) f3 Uj)]/2i-. We claim
that the expected value of d (r, u) over all permutations r of 1,. , 2000), is at most

31/2000. Indeed, for a random permutation r the probability that a fixed neighbor v
of u contributes 1/2 to d(r, u) is at most 1/2000 for every fixed r > 0. Hence, each
neighbor contributes to this expected value at most 1/2000 r>o 1/2r= 1/2000 and the
desired result follows, since IN(u)l=<31.
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Now consider the sum .cu d(Tr, u). The expected value of this sum (over all
7r’s) is at most 31/2000]U], by the preceding paragraph. Hence, there is a fixed
permutation o- such that , u d (o-, u) <= 31 / 2000[ UI. Put Vo, { u U] d (or, u) > 1/4}.
Clearly,

4" 31 IUI n
Yogi_-< <-

2000 16 16

Define Vo Voo U Vow, W U- Vo V- Vo. The last inequality together with (3.1)
gives

IVol_-<

Let F be the induced subgraph of G on W and define V U(i)1"3 W (1 <=i<= 2000).
The V/’s clearly form a proper vertex coloring of F. Also, for every i, -< <_- 2000 and
every v V

1’’ IN(v) n VI
j=/ 2-j 4

and hence v has at most 2 i-j-2 neighbors in V for each j, <-j < i. Let H be any
acyclic orientation of G in which all the edges that join a member of V to a member
of V, where i>j >= O, are directed from V to V (the edges inside V0 can be directed
in an arbitrary acyclic manner). Clearly H(1)--H satisfies the property P(1). Thus,
the order player can orient G1 according to H. This completes the proof of the case
d--1. [3

Continuing the induction, we now assume that H(r) has property P(r) for all
r< d, and prove that the order player can always guarantee that H(d) will have
property P(d). We start by proving the following simple lemma.

LEMMA 3.3. Let F be a directed acyclic graph with a proper g-vertex coloring with
color classes W, W2,’", Wg. Suppose that for each g >=i >j >-_ 1 and each v Wi, v
has at most 2 i-j-2 neighbors in W, and that every edge of F whose ends are in W and

W for some i>j is directed from W to W. Then the outdegree of every vertex of F in
the transitive closure of F is smaller than 48.

Proof Let v be an arbitrary vertex of F. The outdegree of v in the transitive
closure of F is obviously smaller than or equal to the total number of directed paths
in F that start from v. Suppose v W. Each such directed path must be of the form
V, Vi2 Vi3 ", Vi,., where > 2 > >... ir => 1, Vi2 W/2, vi, W/,.. There are 2 i-1

possibilities for choosing i2, i3,"" ", ir. Also, as each vertex of the path is a neighbor
of the previous one, there are at most 2 i-i2- possible choices for vi2, 2i2-i3-2 possible
choices for vi (for each fixed choice of vi2), etc. Hence, the total number of paths is
at most 2- 2-- 2i2-i3-2 2"-’-"- < 28. 2i-i"< 48. This completes the proof
of the lemma. [3

Returning to the proof of Proposition 3.2, recall that d _-> 2 and that by the induction
hypothesis H(d- 1) has property P(d- 1). Thus, there is a subset Vo V satisfying

F/ F/ r/
(3.2) w%l-<-+--+" "+ 2+----58 16

and a proper D 2000(a-)-vertex-coloring of the induced subgraph of H(d-1) on
V- Vo with color classes V, V, , Vo satisfying the conditions of property P(d 1).
Put U V Vo, let F be the induced subgraph of H(d 1) on U, and let T U, E (T))
be the transitive closure of F. Let Ga (V, Ea) be the graph constructed by the graphs
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player in round number d. Let Voo be the set of all vertices in U whose degree in Gd
is at least 2d/4" 4 and define

Voo VooU{u U’::lv Voo with (v,u)E(T)}.
Since Gd has at most n edges, 19ool--< n/(2d+3 4). Also, by Lemma 3.3, the outdegree
of each v 9oo in T is at most 4D- 1. Hence

(3.3) IWool_-< n/2+

Let G be the induced subgraph of Ga on U- Voo. Then the maximum degree in G is
smaller than 2a+4 4D. For each i, 1 -< -<_ D, let O denote the induced subgraph of
on (U- Voo)13 V. As each is a subgraph of , it has a proper vertex coloring with
2a+4 4 colors. For each i, 1 =< <- D, fix a proper n-vertex-coloring of with color
classes UN,+, Uu,+," ", UN,+,,, (some ofwhich may be empty), where Ni E-ll n and

D

(3.4) n=>100.22d+7.16 for each l=<i=<Dand ni=2000
i=1

(Note that since D= 2000d-), d > 2, there is such a choice for the n’s.) For every
vertex u of G, let N(u) denote the set of all its neighbors in G. Let us call a permutation

D
7r of 1, 2, 3, ,= n legal if it maps each set of the form {N + 1, , Ni + n} into
itself (and only permute the elements inside these sets among themselves). For any
vertex u of G and any legal permutation 7r, define the 7r-degree d(Tr, u) as follows;
let k satisfy u Uk), then

k-1

d(Tr, u)= Y IN(u)fq U(jl/2’-.
j=l

DWe claim that the expected value of d(0"r, u), over all I-I= ni! legal permutations, is
at most IN(u)l/min=i<=on<= 1/(100.2d+3" 4D). Indeed, consider a fixed neighbor v
of u. If v belongs, as does u, to the same graph , then the probability that for a
random legal permutation 7r, v will contribute 1/2 to d (Tr, u) is at most 1/n, for each
fixed r > 0. Otherwise, it is easy to check that this probability is even smaller. Hence,
each neighbor contributes to this expected value at most 1/n Y>o 1/2= 1/n, and
the claim follows.

Consider now the sum d(Tr, u), where u ranges over all vertices of G. The
expected value of this sum (over all legal permutations 7r) is at most

V(O)]/(100 2a+3" 40) -< n/(100 2d+3" 4). Hence, there is a fixed legal permutation
o- such that ,v(o)_d(o’, u)<=n/(lO0 2a+3" 4D). Define I7o ={u V(O)" d(o-, u)>
1/100} and Vo=VoU{uV(O)’::lv"o with (v,u)E(T)}. Clearly, I?o1_-<
n/(2a+34) and, hence, by Lemma 3.3,

(3.5) Vo, <= n/2d+3.
Put V= VoU Voo Vow, W= V- Vo. By (3.2), (3.3), and (3.5)

Ivgl__<-+--+. .+2a+2.8 16

Let be the induced subgraph of ( on W, and define Vl U() f-I W (1 -< =< 2000
2000(a)). The sets V’ clearly form a proper vertex coloring of (. Moreover, as each
U is an independent set in H(d 1), the sets VI actually form a proper vertex coloring
of H(d-1), as well. Moreover, for every i, 1 =< i-<2000a), every ve VI satisfies

’-’ IN(v) 0 Vii 1

2 i-j 100j=l

where N(v) is the set of all neighbors of v in G. Thus, for each fixed j, -j < i, v has
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at most 2i-J/lO0 neighbors in V. Let Hd be any acyclic orientation of the edges of
Gd obtained by orienting all the edges that join a member of VI and a member of V:J,
where i>j_-> 0, from VI to Vj. The edges inside V are oriented in an arbitrary acyclic
order consistent with the order given on H(d 1). Notice that all the edges of H(d 1)
that do not lie inside VD are also oriented from VI to Vj with i>j-> O. In order to
show that H(d) H(d 1) t_J Ha has the property P(d), it remains to check that for
every i> j_-> 1, every v VI has at most 2 i-j-2 neighbors in V. By the construction, v
has at most 2i-J/lO0 neighbors in V in the new graph Ha. Recall that each VI is a
subset of one of the sets Vk corresponding to the graph H(d- 1). Suppose VI_ Vk,
Vj

__
V. Then k -> 1. If k or k 1, then, since v has at most [2 k-l-2] 0 neighbors

in Vt in the graph H(d- 1), it follows that in H(d) v has at most 2i-J/lO0</2i-j-2

neighbors in Vj, as needed. If 1-_< k-2, observe that our construction implies that

(i-j)->(k-l-1) min ni>-(k-t-1) .100.22d+y.16D>(k-/) .100->200.
liD

Thus, in this case, the total number of neighbors of v in gj is at most 2i-J/100+ 2 k-l-2

2i-J/100+ 2(i-j)/l < 2 i-j-2.

We conclude that the order player can orient Gd according to Ha, and maintain
the property P(d) of the graph H(d)= H(d-1)U Ha. This completes the induction
and the proof of Proposition 3.2. [3

The main result of this section, stated in Theorem 3.5 below, is an easy consequence
of Proposition 3.2 and the following simple lemma.

LEMMA 3.4. For every d _-> 1, 2(d+3)-> 32. 2000(d).
Proof We apply induction on d. For d the inequality is trivial, as 2(4)--

64,000 32. 2000). Assuming it holds for d- 1, we pro+ve it for d => 2. By assumption
2) 1) 0 (d 1)

2 (d+2) => 32 2000(d-). Hence 2(d+3) --’22 --2> 32.2000 --(2)32 2 00’-

(22’. 2000) ’’’-’) (2’) ’’’-’) (2000)2"-’) > 32. (2000)a).
THEOREM 3.5. The order player can avoid ending the orientation game during the

first log* n-5 rounds. Hence, by Proposition 3.1, the time required for finding an
approximate maximum among n elements using n comparisons in each round is at least
log* n 4.

Proof Clearly, we may assume that log* n- 5_>-0. By Proposition 3.2, the order
player can maintain the property P(d) for each of the graphs H(d) constructed during
the algorithm. Notice that by Lemma 3.3, the outdegree of every vertex in the transitive
closure of a graph that satisfies P(d) is at most 4)+n/8+n/16+ .+n/2a+<
4+ n/4, where D=2000(a). Thus, it follows that if 42<’)< n/4, then the graphs
player can keep playing for at least r + rounds. Therefore, by Lemma 3.4, the assertion
of the theorem will follow if for r log* n 5 the inequality 42(’+3)/32 < n/4 holds. Since
for r > 0 4 42<’+3)/32 < 2 (r+4), this follows immediately from the definition of log* n.

4. Extensions and related results. In this section we merely state, without proof,
several extensions of the results of this paper and several related results. The proofs
of these results combine the methods used here with some new ideas, somewhat similar
to ones used in [AV87], [AAV86], [AP89]. The detailed proofs are somewhat compli-
cated and will appear somewhere else.

For integers n_->2 and p, l_-<p_-< (), and for a real number e, l/n-< e-<-5, let
r(n, p, e) denote the time complexity of the best deterministic comparison algorithm
that finds, among n elements, an element whose rank belongs to the top en ranks,
using p comparisons in each round. Clearly r(n, n, 1/2) is just the function r(n) discussed
in this paper. For e 1/n, the problem is that of finding the exact maximum, and the
case p corresponds to serial algorithms. We can prove the following theorem.
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THEOREM 4.1. For all admissible n, p, e,

r(n, p, e) (R)|_n+[ log
\P

log(l/e)
log(2+p/n)

Thus for all n, p <- 2 n, e

r(n,p,e)=(R)(+loglog 1-+e lo*_ n

and for all n, p >-_ 2n, e

log 1/e
r(n, p, e) 19 log

log (p/n)

For e 1/n this theorem reduces to Valiant’s result about finding the maximum.
For e =, p n this reduces to our Theorem 1.1 (with a somewhat cruder estimate).

Next we consider approximate sorting. For n => 2, 1 _-< p _-< (), and 2/n2 =< e <= , let
a(n, p, e) denote the time complexity of the best deterministic comparison algorithm
that uses p comparisons in each round and finds, given n elements, all the order
relations between pairs but at most e(). The results of [BR82], [AA88], [AKSS86b],
[BB87] deal with the minimum p for which a(n, p, e)= for some e o(1). Notice
that a precise determination of a(n, p, e) contains all the known results about deter-
ministic comparison sorting or approximate sorting algorithms. We can prove the
following result, determining a(n, p, e), up to a constant factor, for all possible n, p,
and e.

THEOREM 4.2. For all admissible n, p, e

log 1/e
a(n,p,e)=19

log(l+p/n)

Thus, for p<=2n, a(n,p,e)=19(nlog(1/e)/p+log*n) and for p>=2n, a(n,p,e)=
19(lo8 (1/e)/log (p/n)+log* n-log* (p/n)).

For e=2/n this theorem corresponds to sorting and gives the known
19(log n/log(l+p/n)) bound (which is 19(n log n/p) for p<=2n lnd is
19(log n/log (p/n)) for p _-> 2n), (see [AV87], [AAV86]). Notice that for p n and for
any e > 1/2g*n, a(n, n, e) 19(log* n). As shown in 3, f(log* n) rounds are required
(with p n), even if we wish to find one element known to be greater than n/2 others.
By the last equality, O(log* n) rounds are already sufficient to get almost all the order
relations between pairs.

Finally, we consider the problem of approximate merging. In this case the results
and the methods are simpler and similar to the methods of [Va75], [BHo82]. For n,
l<=p<=n and 1/2n2<-e<=1/2, let m(n,p,e) denote the time complexity of the best
comparison merging algorithm that uses p comparisons in each round and finds, given
two sorted lists, each of size n, all the order relation between pairs but at most en.

The results of [Va75], [BHo82] deal with full merging, i.e., the case e < 1/n. We
can prove the following theorem that determines m(n, p, e), up to a constant factor,
for all admissible n, p, e.

THEOREM 4.3. For all admissible n, p and 1/n <-e <=-,

L+m(n, p, e)=19 p log
log 1/e )log (2+ p)

Thus for p<=2/e m(n,p, e)=19(1/(ep)+loglog l/e) and for p>=2/e m(n,p, e)=
19(log (log 1/e/log ep)). For the case e <_- 1/n, the bounds are the same as for e 1/n
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(up to a constant factor), which are the same bounds as for exact merging: (R)(n/p+
log (log n/log (2+p/n))).

Acknowledgment. We thank N. Pippenger, who brought the problem of finding
an approximate maximum to our attention.
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